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RECIPROCITYRELATIONSINAERODYNAMIC‘
By MAX. A. HEASLFJTand JOHNR. SPREITER

s~Y

Rever~e-$owtheoremsin aerodyn.wwimare shown to be bawl
on the 8amegeneraJeoneepk inoolved in many reciprocity the-
orem8 in the physical science8. Reciprocal theoremsfor both
ekady and unsteady motion arefound m a k@.eaJconsequence
of this approach. No rtitrictti on wing plan form or jiight
Mach number are made b~ond tho8e required in linearized
comprewibl@ow anaJy8i8. A number of ezamplee are ltited,
includi~ generaL itigral theorem for lifting, rolling, and
pitching w@8 and fOr wing8 in nonuniform downwa.shjiekie.
Corrmpon&nti is &o e8tabli&d betweenthe buildup of circu-
lation WitAtime of a wing 8tarting impuls-iveJyfrom red and
tile buildup of lift of tk game wing n-wing in the reuerse
direction intoa shqyedged gtd.

INTRODUCTION

Some of the most important results% the recent study
of wing theory have been achieved through the development
of rmwse-flow relotions. The theorems alrpady obtained
are of outstanding practical utility and it appears obvious
that the fullest exploitation of the methods haa yet to be
accomplished, either from a purely theoretical standpoint
or in the routine calculation of wing characteristics. Atten-
tion to such problems in aerodynamics was initiated by von
ILirm&n (ref. 1) who tit amounted the invariance of drag’
with forward and reversed directions of flight for a nonlifting
symmetrical wing at supersonic speed. Subsequently,
mdvances in the theory were made by Munk, Hayes, Brown,
Hmmon, and Flax (refs. 2 through 7). Up to the present
time, the most general results have been expressed by
Ursell and Ward (ref. 8) and by R. T. Jones (ref. 9) in his
attack on the study of wing shapes of minimum drag.
In the forms given in the two latter papers, the derived
equivalences could be termed reciprocal or reciprocity rela-
tions rather than reverse-flow relations; in fact, this change”
in terminology divorces attention, momentarily, from the
purely aerod~amic aspects of the results and, in this way,
suggests a reorientation in terms of the wwiou9 similar
relation9 appearing in other engineering fields. In the
theory of elasticity, for example, a reciprocity theorem for
small displacements of an elastic medium is so expressed
as to appear in formal agreement with the statement of the
result given by Uriell and Ward (see, e. g., ref. 10). This
theorem is attributed to E. Betti and was published in 1872.
A generalization was given by Imrd Rayleigh in 1873, and

in various sections of his two volumes on the theory of sound
(ref. 11) discussions of ‘reciprocfd relations in an elastic
medium and for acoustic sources are given. In 1886, von
Hehnholtz (ref. 12) obtained, by means of variational
methods applied to Hamilton’s characteristic function, a
reciprocal theorem for small changea in the momenta and
coordinates of a general dynamical system in forward and
reversed motion. This result was comnmnted on, in turn,
by Lamb (ref. 13) and an independent proof based upon
Lagrange’s generalized equations was given. The paper by
Lamb is of particular interest since it contains the essential
idea underlying the development of reverse-flow theorems
in wing theory. Thus, Lamb remarks, as had Lord Rayleigb
previously, that reciproci@ relations between sound sources
do not apply directly in a moving atmosphere. He points
out, however, that the reciprocity can be restored if the
direction of the wind is also reversed. Further examples
of reciprocal theorems appear m the theories of electricity
and magnetism (ii particular, reference should be made
to Maxwell’s discussion of the subject in ref. 14) and of optics.

The generality in the statement of re.ciproci~ relations
appears, almost universally, to have held back their applica-
tion to problems for “which they are obviously, in retrospect,
particularly fitted. This generality is even more apparent
in some of the conclusions of Lord Rayleigh and von Helm-
holtz which apply to nonconservative systems.’

The purpose of the present paper is twofold. First, a close
connection will be established between reverse-flow theorems
in subsonic and supersonic, steady-state wing theory and
known reciprocity rela-tions between two solutions of the
equation governing the flow field. In this way, machinery
will be provided whereby extensions of existing results to the
case of unsteady motion follow directly. Second, a number
of particuhm problems in wing theory in steady and unsteady
flow will be considered. It will be shown that, provided
attention is limited to force and moment characteristics,
the complexity of many solutions involving nonuniform ~

flow fields, control-surface deflections, and unsteady motion

can be reduced considerably. In some cases, previously
obtained solutions will be calculated. Comparison with
the original calculations will almost invariably highlight
the economy of effort in obtaining the &al result. The
utility of reverse-flow theorems is based on the fact that
they build from lmown solutions and thus avoid the necessity
of starting eaoh problem anew.
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GE~ ANALYSIS

RECIPROCITY RELATIONS FOR A CLASS OF PARTIAL
DIFFERENTIAL EQUATIONS

. In this section, integral relations associated with linear
partial differential equations will be revietied from the stand-
point of relating independent solutions. The subject
matter is precisely Green’s theorem and, in common with
the usual expression of the theorem, it is preferable to
treat the variables initially as abstract quantities. Consider,
therefore, a claw of linear partial dii%ential equations of
second order with independent variables Xl, X2, . . . , -X.

that may be thought of as rectanguhw coordinates in a
spaoe of m dimensions. Denote differentiation of the
function *(XI, Xz, -. . . , X=) with respect tQ the mriablea
Xi and Xj by the subscript notation

rmd consider the differential equation

W)=C5$ &w*,+-w=o
i-l -1

(1)

where, for the pucpos= at hand, Ati=zlji are made inde-
pendent of X{ and Xj, and B is a constant. Such equations
fall within the claw of self-adjoint equations.

By Green’s theorem (see, e. g., ref. 15), it is possible to
relate two arbitrary functions # and $2by the integral qms-
sion

j-j-’JhL(4)-@(Q)ldv= –.jltw-uw.iw (2)

where the left member is a volume integral over a preacri%ed
region in m-dimensional space and the right member is a
surface irkqgqal over the hypersnrfam S’ enclosing the given
region. Equ@ion (2) certainly holds for any region in
which @ and Q and their fit and second derivatives are
continuous. The directional derivatks D. are defined in
terms of the direction cosines nl, %, . . ., n. of the norm~ to
the surface S with the stipulation that the normal is directed
into the given region. Thus, setting

..

pdn ,;=NV,
-1

where v,, v,, . . . . v= ace the direction cosines of a line termed
the ‘tconormal,” the directional derivative is defined by the
esprtilon

If, ilmd.l~, # and Q are assumed to satisf y equation (1), the
left side of equation (2) vanishes and the radting expression

JJm=Ms=JS+D=Qds
(4)

is a general rcciproci@- relation expressing the functional
dependence between two arbitrary solutions of equation (l).

An interesting interpretation of equation (4) has been
given by several writers (see, e. g., ref. 16, p. 46) and applies

-.

to the particular case when + and $2are iclentiiied with the
perturbation velocity potential p in the theor? ,of incom-
pressible-fluid flow. The governing equation ]s Laplace’s
equation in three dimensions ,

%+$%+%=o (6)

m’d the reciprocity relation takes the form, for two possiblo
sOhltiOIIS (c and p’,

(6)

where the directional derivatives are now along the true
normals to the surface S enclosing a three-dimensional
volume. It is known that any actual state of motion of n
liquid for which a single-milued velocity potential exists can
be produced instantaneously by the application of a properly
chosen system of impulsive’ pressures. These impulshw
pressures are directly proportional to the velocity potential
plus an arbitrary constant which may, in the present case,
be associated with the pressure of the uniform stream.
Equation (6) is thus seen to represent summations of the
cross products of impulse and normal velocity in two possible
motions of, a conservative system and is a special we of the
dynamical theorem {ref. 11, p. 98)

(7)

where p,, Q, ~d pr’~ krt are generalized components of
impulse and v~oci~ in any two possiblo mo Lions of a system
which starts from rest.

The interpr~tation of equation (6) that leads to equation
(7) provides an indication of the close connection between
reciprocal theorems based upon the principles of least action
and the symmetric character of Green’s theorem for certain
second+rder differential equations. In the subsequent
applications it will be convenient to proceed directly from
equation (4) and seek to establish reciprocal relations between
flOTV fields in wing theory. Such a process is well known
when # or Q is replaced by the elementary solution associated
with a unit source and, in this case, establishes a germ-al
solution in terms of source and doublbt distributions deter-
mined by arbitrary boundary conditions. The present
objective is, however, different in that one wishes to get a
symmetrical dependence between two general solutions.
Moreover, the apparent symmetry of equation (4) must be
consistent with physical considerations so that, for example,
the velocity at point A induced by a single source at point B
is equal to the velocity’ at point B induced by a source at
point A. If, in the two systems, the effective free streams or
flight directions are opposed, a fore and aft symmetry occurs
and the possibili~ of maintaining symmetry in the reciprocal
relations becomes feasible.

RECIPROCAL THEOREMS IN WING THEORY
.

EEVRRSEFLOWFORS~ONIC WINGS

Consider a thin wing at possibly a small angle of attack and
situated in the immediate vicini~ of a flat surface fvhich is
designated the xy plane. For sufficiently small thickness and
angle of attack, the perturbation velocity potential or any of
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the perturbation velocity components of the wing satisfy the
liieurized partied differential equation of compressible flow.

. . t%+hu+h=o (8)

where /12= 1—MO*= 1— ( UO/aJ2,and Ui,G are, reapedively,
tlm flow velocity and speed of sound in the free stream.
13qurhon (8) applies in forward or reverse flow, provided the
corresponding free-stream Mach numbers L.& and lMO’ are
equal. In figure (1) a lifting wing with plan form ~ is
indicated along with the vortex wakes as the configuration
would appear if the two flow fields were superimposed. It
will be assumed that the wing chord is finite and that the
profiles are closed.

●

FmmiE.L-view ofwingfncombkwltiw field.

It is proposed to apply the general reciprocity relation (4)
to these flow fields in a manner similar to the approach used
in developing the basic solutions of the diilerential equation
(see, e. g., refs. 17 and 18). Thus, for subsonic floti< hemi-
spherical regiona of lmge radius and lying fit above and
then below the plane of the wing will be chosen as the
volumes of integration. The surface integra19 will therefore
extend over a hemisphere with center at the wing and a flat
surface that lies immediately adjacent to the z= O plane.
This latter surface is subsequently to be brought into coin-
cidence with the plane of the wing but must be considered
first in its displaced position since only then can the flow be
assumed freo of possible singukmities in perturbation veloci-
ties and their gradients. As in wing theory, in general, the
attenuation of the perturbation potential and its gradients
mmy be assumed of such a nature that the integrated con-
tributions of the wing and its wake over the hemispherical

surfaces vanish in the limit m the radius becomes infinitely
lmge. It remains, therefore, to consider the integrals over
the surfaces at z=O+ e and z=O— c. Denote these surfaces
as u. and al, respectively, where the subscripts w and’1 specify

values above and below the z= O plane. Equation (4) can
then be written M

Ssa+’ H+~d~=+’~d8; ‘n directed upward (9a)

Uz 61 ‘

where the primes denote conditions for the reversed flow. “
In equations (9), # is now replaced by the perturbation

velocity potential p(z,q,z) and ~ by the z or streamwise
component of perturbation velocity u(x,y,z). By virtue of
the irrotationality of the flow, the gradients of u and w are
related by the expression

and equations (9) can both be written in the form

SS
&o’

SS
~=ds= U’wds

Integration by parts ovb either of the surfaces U. or al gives

J

.

—m @’l::d~-ssuw’ds=ssu’@ ’10’
At z=– ~ the potential p for the forward flow vanishes and
at z=+ w the upwash w’ in the reversed flow vanishes so
that the first term on the left is zero. The remaining double
integrals have for their surfaces of i&xgration the displaced
pkmes u. and- al. In order to obtain a concise form of the
reverse-flow theorem, it suiiices to subtract the integrals m-
intendedover. Urfrom the integrals over u= and let the planes
approach coincidence with the plane of the wing. Since
w,d and’ U,U’ are continuous everywhere except possibly
in the immediate vicinity of the wing, the integration region
can be restricted to planes slighdy above and below the wing
but extending beyond the wing edges. I?rovided the singu-
larities at the edges can be disregarded, the analytical m-
presion of the steady-state reverse-flow theorem of Ursell
and Ward (ref. 8) becomes

If Js–(~%’–u~:)ds= (W’wu-u{w,)d/S (11)

P P,

for either Mt@o surfaces or symmetrical wings where P is the
plan form of the %ing in the z=O plane.

It rem&s to discuss the effect of edge singularities. In
the case of ? lifting surface, square-root singularities in both
u and w can occur at the leading and trailing edges just on
and off the wing, respectively. In the combined flow fields,
the limiting process would then yield residue terms analogous
to the leading-edge thrust of a lifting -plate. If, however,
the Kutta condition is imposed at the trailing edge for both
the flow in forward and reverse direction, a combination of
singularities doea not occur and equation (11) is valid. If
the leading edge of a symmetrical wing ia rounded so as to
produce a square-root singularity in w on the wing, a square-
root singularity in u occurs just off the wing and a term cor-
responding to the leading-edge drag (ref. 19) appears. If
the geometry of the wing is fixed in the forward and reverse
flow, however, the effect of these terms is canceled and equa-
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tion (11) still applies. It is important to point out that if
the Kutt a condition is not satisfied, then the area of integra-
tion of equation (11) cannot be restricted to the plan form.

The two sides of equation (11) are expressed in terms of the
same cctordinate system but it is usually preferable to wo-

“ ciate with each of the two streams an z axk extending in the
stream direction. To this end introduce now the subscripts
1 and 2 to denote the forward and reverse flow and the two
coordinate systems. Thus, in general,

xl= —x2+& YI=—Y2+% Zl=q (12)

where ~ and v are arbitrary const ants, and equation (11) then
becomes

SS
[%l(X,,Y,)% (%Y1) — ?L21(z1,yI)?D~(Zl,yl)ldxldyl=

P,

SS
[~(%Y2)W1(%Y2) –~~(G,v2)~f1(~,Y2)lwY2 (13)

.
P, .

In the case of a symmetrical nofllftinq wing, the relations

Jl&=ul, W.=—WJ

must apply and, in the case of a lifting surface, linearized
theory yields

~=—ul, Wu=wl

It follows that in either case, equation (13) reduces to the
form

SS
U1(xl,yl)w2 (zl)Yl)~l~Yl=

SS
%4%YJWI(%Y2)W% (14)

P, P,.’

where the veloci~ components can be evaluated on either
the upper or lower surface of the plan form. If, further-
more, the linearized pressure relation

p—po=—huou “(15)

is used where p is local static pressure, POis static pressure
in the free stream, and the wing profiles are assumed closed,
equation (14) becomes ‘

SS
2A(%,Yl)w2(%Yl)&~Yl=

SS
pd%?hh (%Y2)ddYa (10

PI P,

If, instead of specifying boundary conditions in a single
plane, it is necessary to heat bounday conditions for a
system of planes, the expression of the reverse-flow theorem
is of the same general form as equation (11). Provided the
Kutta condition is imposed at the trailing edges of all lifting
surfaces, the relation becomes

J“ (vJds=JJ (vn)z’%~ (17)

2 z

where the area of integration z extends over both sides of
all the wing surfaces, V. is the component of perturbation
velocity normal,to and directed away horn each wing, and

the subscripts 1 and 2 refer to forward and reverse flow in
the two tial systems.

,REVERSEFLOWFORSUPERSONICWINGS

The development of a reverse-flow theor~m for supemonic

wings parallels closely the analysis for the subsonic case.

For either planar or multiphmar systems, the conormal in

equation (4) is, in fact, the normal so long as the surfaco of

integration is a plane pimdlel to the z ax~s. In the caae of

the single wing, for example, equations (9) apply where the

surfaces u are slightly removed from the plane of the wing

and where 4 satisfies the differential equation

(M02-1)+=– *VU–!J.=0

b the limit as u ap~roaches the z=O plane, the reversibility
theorem takes the form of equations (11) and (16), provided
the integration extends beyond the edges of the wing. It is
necessary to include these edges. for wings with subsonic
leading and trailing edges since singularities occur in tlm
perturbation components and. the solutions are not ncces- I
sarily unique. For supemonic-type edges, the area of
integration can be confined to the plan form “of the wing and
this is also true for subsonic edges, provided the Kutto con-
dition holds for all subsonic trailing edges in both the forward
and reverse flow. Equation (17) relates the two posaiblo
flows in the case of multiplanar systems.

REVERSEUNSTEADYMOTION

k the case of uns@ady motion at either subsonic or super-

sonic flight speed, the basic equation may be taken in tho

form
titt-ti=-%-!hs=o (18)

where t=a#, G is the speed of sound in the undisturbwl
region of the field, t’istime, and #is the perturbation velocity
potential or any of the perturbation velocity components.
Equation (18) is the acoustic equation for small disturbances
in three space dimensions and holds for a system of Cartesim
coordinates fixed relative to the undisturbed air. In appli-
cations to wing theory, therefore, the wings move relative to
fixed axes.

In the derivation of a useful theorem it is convenient 10
treat thin wings at d angles of attack and to assume tlmt
the motion takes place in the xy plane. The visualization of
the time and geometry relations is relatively easy for two-
dimensional wings mo@g at a uniform speed, as indicated in
@e 2. The airfoil starts at time t’=0 and moves to the loft
at a constant veloci~ UOso that the trace of the leading eclgo
in the xt plane is z= — Ud’= —M& and the trailing-edge trnco

is x=2a—M& The lines x= &t and z=2a+t are the trnces
of the extremities of the regions affected by the acoustic
waves set in motion at t’ =0 by tbe leading and trailing edges.
In figure 2, the wing has traveled a time T’= T/% and the

boundary condition determining the wing shape during the
motion will be fixed by prescribing the value of vertical
induced velocity w over the region ‘(swept out” of the d

plane by the wing. In order to determine a reciprocal theo-
rem, a second wing is assumed to start at the final position of
the fit wing and to move with negative velocity until it has
rdached the initial position of the fit wing. With thcso
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concepts in mind, it follovw from equation

relation

(4) that the

(19)

holds where q and # me, respectively, the perturbation po-
tentids for the forward and reverse motions. The region of.
int egmtion is determined by the area ocoupied in the xt
plane by the wing, and the Kutfa condition is assumed to
apply to the trailing edge when in subsonic flight.

If the left side of equation (19) is integrated by parts, the
general relation beccmes

SS
ap ‘dzdt=Ssapf—
ZiFw ~ wdxdt (20)

If the motion of a thrcedimensional wing is to be studied,
equations (19) and (20) must be moditied tc include an inte-
gration with respect to y.

Two further changes in equation (2o) serve to simplify
applications. In the first plaoe, asymmetry is restored to
the e.spression if two distinct systems of axes are used as in
equation (14); in the second place, the pressure relation

(21)

Where p. denotes undisturbed pressure, permits the introduc-
tion of pressure p in the integrands. The final expression
for tho three-dimensional case is, therefore,

SSS PI (% YI, tI)w@I, YI, W@dtl

.
SSS

ph, Y2, t2)w1(x2, Y2, W4v2& (22)

vrhere the two motions now follow the same path in reverse
directions but are refereed to the two sets of oppositely
orionted axes satisfying the relations

xl= ‘%+& yl=–ya+% zl=%, tl=–h+T (23)

where & q, and r fix the relative positions of the two origins.
I’igure 3 indicates one possible orientation of the axes..

Equation (22) reduces to a much simpler form, provided
further restrictions are imposed on the up-wash functions

3~l1305+&18

.7,

x,

.
FlOUm3.-C00*h ~ for hw4hod0nd m-lug h nnehdy motion.

OZ(ZI, YI, L) md WI(G, YZ, tJ. In order to fix the idea, con-
sider the case in which the figs have traveled a time T’,
(T’= T/aJ and a distance UOT’=MOT. Let the two sys-
tems of coordinate axes be placed such that tl=O sets the
st@ng time of the fomvard motion and G= O sets the start-

ing time of the reveme motion; the two origins are further-

more oriented such that they are at opposite ends of the

mot chord of the common plan form. Equation (22) then

becom~

ITd’’ssp’(x’
P, (tl)

Yh h)m(% Yl, Q*l~Yl

. J 1/“Tdh P2(%,
o

9G)
Y2,G)W1(% Y2,tJ&4zy,

where the functions W1 and WJ2have an implicit dependence
upon T. If w, and W2remain constant for zl+lL&=const.

or w+ilZ&=amst., the expression

ufh(%?h T)’W(WY1, Zh-Ww

P,(T)

.
SS

P2(z2, Y2, qw1(z2, Y~, ~dx2dy2 (W

P2(T)

follows after taking a derivative with respect to T of the
original equality. Equations (24) and (14) are now equiva-
lent in form, with T taking the role of an auxiliary param-

eter. In this way, certain olmses of unsteady motions can be

treated simultaneously With steady motions.

In the applications to follow it will be conv&ient to intrc-

duce into equation (24) upmsh functions of the indicial

type; that is, functions that are zero up to rLfixed time and,

after experiencing a iinite discontinuity,’ remain constant

for all subsequent valu~ of time. Such indicial or, step

variations can be asaumed, say, for angle of attack, rate of

pitch, and rate of roll since they satisfy the requirements

underlying the derivation of equation (24). This choice of .

functions ~ prove to be advantageous in that the integrals

of the responsive pressures d yield results relating the

~ ~haracteristics. Theorems to be given later vi-ill speak

speciikally of steady and indicial motions. It is to be under-
stood, however, that the indicial results can be further
extended when the same wing is assumed to be emouting

*
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in forward and reVerOOflight. Thus, by
means of Duhamel’s integrrd (see, e. g., re~ 20), if f(t) is
the response in the wing charw%ristic to a step variation

in w at time t=O, the respotie to an arbitrary variation

with time of w can be written

m)=$J&)w(T)d’ (25)

If it is lmovm, for example, that’ the lift per unit angle of
attack is the same at correspondhg values of time for a
wing experiencing an indicial angl=f-attack change in
forward and reve.me fight, ‘it follows that the build-up of
lift is the same at corresponding vsiluea of time for all for-
ward and reverse motions, provided the time histories of
the motions are the same. The equivalence of lift would
thus be established, for instance, for oscillatory” variations
in angle of attack.

An ali%native study of reverse-flow theorems for oscilla-
tory motions could be based upon the mo~ed wave equation

xzz+x.+b+~x=o

which results horn setting. x=eim~x in equation (18). Such a
study would corroborate the conclusions drawn horn equa-
tions (24) and (25).

APPLICATIONS

The results of the foregoing analysis maybe employed to
determine a number of special theorems that are particulady
useful. in the calculation of the aerodfiamic characteristics
of twisted wings and of wings in nonuniform dowmvash fields.
The theorems apply equally to wings acting either alone or,
in certain cases, in combination with other wings or’ with
cylindrical bodies having their generators alined with the z
csis. Moreover, they apply not only to wings in steady
motion but also to wings performing unsteady motions of the
indicial type, or unsteady motions derivable therefrom. For
wings in more ‘komplex unsteady motions, however, it will
be necessary to refer to the more general rwults of equation
(22). Some problems of this nature will be described at the
end of this section.

The applications to be included are exact within the frame-
work of linear theory and involve no further reotrictiofi on
the wing plan form or Mach number except in certain indi-
cated cases where it will be convenient to use results based
on slender-wing theory. The examples are intended to be
representative in nature.

REVERSAL THEOREMS-STEADY AND INDICIAL MOTIONS

Revd theorems are defined here as relations between
the aerodynamic characteristic of identical wings executing
the same type of motions in forward and reverse fright. The
results presented in this section apply not only ‘to single
wings in stendy motion but also to combinations of wings,-as
in cascades or multiplanes, performing either steady motion
or motions of the indicial type.

DRAG OF SY?WbfETEICAL NONLWIVN G WINGS

The drag of a symmetrical; sharydged wing in linem
theqv maybe determined by integrating over the plan form

the product of the pressure and the slope in the x direction

of the wing surface; when the wing haa blunt edgea with

slopes ,having square-root singularities, these singularities

yield an added contribution (ref. 19). In general, themforo,

the drag D of a symmetrical section is given by
,

D=D.+2
V()

p&dS (26)

where D, is the drag attributable to the edges,
If the subscripts 1 and 2 refer to the same wing in forward

and ieverae flow, respectively, and with the two systems of
axes introduced in equation (23), local slopes are related as
follows

(27)

Equations (26) and (27), together with the reciprocal relation
(24), yield

$! (%d’’=-lp-+w’=D,– (D,),=2 PI ~

1

Since the geometry of the wing is fixed, the edge contribu-

tions are the same,
(D,),= (D.), (29)

agd, co,gsequently,
DI=D, (30)

whicli confirms the relation stated in reference 9.

THEOREM: The pressure drajg in steady or indicial

motion of symmetrkd nonlifting wings is the same in

forward and reveme flight.

LIFT ON FLAT-PLATEWINGS

The lift L of a wing may be. determined by integrating tho
differential prewmre Ap=pl—pti ‘over the wing plan form,
thus

SS
L= Apdfl (31)

P

For fla~plate wings, the local angle of attack of tho wing sur-
face is a constant

Application of equations (31), and (32), and (24) yields tlm
following:

or

~~~=~h,la,~l=~palds,=~~
1

LJCY,=LJCX2 (33)

THEOREM: The lift per unit angle of attack of flat-
plate wings in steady or indicird motion is the sanm in
forward and reverse flight.

,
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This theorem generalizes the relation
Brown (ref. 5) for steady motion.

previously given by

DAMPINGIN llOLL OFFLAT-PLATEWINGS

The rolli& moment L’ exerted on a wing, following the

USUCL1sign convention, is given by

uL’=– yApdS

P.

The locnl rmgle of attack due to rotation about

JP1’Y1, ~2=P1’Y2 _ p~k
u, u,

(34)

thex axisis

(35)

where p’ is the angular velocity of roll, assumed constant.

Application of equations (34), (35), and (24) yields the

following:

or
G’lpl’=&l’Ipi’ (36)

THEOREM: The rolling moment per unit angular
rolling velocity of fla~plate wings in steady or indicifd
motion is the same in forward and reverse flight.

DAMPING IN PITCH OF FLAT-PLATEWINGS

Consider a wing, fit, in forward flight and ‘pitching with
a uniform rmgular velocity gl about a lateral axis; second,
in revenw flight and pitching with angular velocity ql about
rmother lateral axis. Place each wing in a coordinate system
such that the y axis coincides with the axis of rotation and
designate the distances to the moment axes by ti with
propor subscripts, aa shown in figure 4. In such a coordinate
system, the pitching moment 34% exerted on a w-iqg, following
the usual sign convention, is

3!?=0=–
SS

(x–x,)ApdS

P

(37)

IWum 4,-Coordloata sgsfomand6yrnbJ~A fn &um[on of revorseflmthewme
forplt.cblng~gu.

The local angle-of-attack distributions due to rotations
about the y axis are

al=% XI, ~. (t-d* X2=*
“a’=uo (38)

Application of equations (37), (38i, and (24) yields the fol-
lowing:

~ [(~&+(&zol)Ld=&
Js

[(zoI–zJ+(t-zoI)lAPI~sI=

P,

J’s SS
~ (h)Apd&=& ~zAp,dS~= ,

P, P,- ,

Q
g

Q [(M&@ +(g-zoJLJUo z,Ap,d&=Uo

2
or

(w~,+(t-zolxl= (M2)~+(&–z&z)L (39)
!lI q2 .

This equation indicates that the pitching moment due to

pitching velocity is, in general, not the same for wings in

forward and reverse flight. Howevar, if %,=%=& the

pitching moment per unit angular pitching velocity of flat-

plate wings in steady or indicial motion is invarkh.

SPECIAL RECIPROCAL THEOREMS AND APPLICATIONS

In the following section, severnl special reciprocal theorems
will be derived and applications will be illustrated. Recipro-
cal theorems, in contrast to reversal theorems treated in the
preceding section, are defined here aa relations between the
aerodynamic properties of wings in forward and reverse night
that have dissimilar camber, twist, and thiclmess distribu-
tions but have the same plan forms. The motions may or
may not be similar, ahhough it is assumed in this section
that both wings are in either steady motion or unsteady
motion of the indicial type. As noted in the preceding sec-
tion, the results apply eqwilly to wings acting alone or in
combination.

-SYMMETmCNONIJFTING WINGS-STEADYMOTION

The problems of paramount interest in the application of
the general relations are found from considerations of pres-
sure integrals over lifting surface; such pmbl~ W be
given detailbd treatment later. In the present section, a
brief indication is given of the manner in which useful results
can be derived for symmetric wings. The discussion will
be limited to steady-state, two-dimensional, subsonic pres-
sure fields although fairly obvious extmsions can be carried
out.

If” the geometry.of a real symmetric airfoil is prescribed
the theoretical pressure ‘distribution exists and is unique.
If, however, the pressure distribution is prescribed, a real
airfoil does not necesmxily exist, but by means of reciprocal
relations it is possible to derive certain conditions of com-
patibility that_ need to be imposed.
the two subsonic solutions -‘l@)=o, wl(zJ=uo/&q;
and

W(Q) , %(%)

Consider, therefore,

—a<xl<a
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The fimt solution has square-root singdarities in w at each
end of the airfoiland, correspondingly, singularities in u occur
just ahead of the point z=—a and just behind z=a. On the
other hand, equation (14) certainly applim if ~ is zero at
z= &a. If the origins of the *O systems of axes are at
the same position, it follows from equation (14) that %(z)

must satisfy the relation

J
‘ %(%M%

0= _ ~~

This reimlt is useful in the calculation

(40)

Of &fOil SbDI?9 ill-.
volving a change in pressure distribution from that of a known
reference proiile. The restriction on W2at the nose and tail
implies that the derived and reference profiles have the ssme
slope and radius of curvature at those points.. The restric-
tion on%, as given in equation (40), can be interpreted as a
condition that must exist by virtue of the fact that the drag
of an airfoil in two-dimensional potential flow in zero.

As a second example, consider the solutions

that represent velocity and slope of a thin ellipse of ~thiclmes.s
t and chord 2a. If w is chosen as above, such that it van-
ishes at the nose and tail of the airfoil, if% is the correspond-
ing velocity distribution, and if the two sets of axes are as
before, equation (14) yields

From this result, together with the general closure condition,

(41)

a necessary condition for the c16sure of the second airfoil is

(42)

As a final example, consider the solutions for –iz<zl<a
-J

representing veloci~ and slope of a thin Joukows& type

airfoil. In this case, ~ vanishes at the tail and the down-

wash distribution m for the reverse wing may have a square-
root singulari~ at the nose. The nose of the first wing is,
however, blunt and for equation (14) to apply the second
wing must have a cusped tail. Under these conditions,
equation (14) yields

2t U02
J

a (a–2z,) ~ dx,
3&fza -s

Making the substitution zI= —x2 in this equation and inte-
grating the left side by parts, one has

‘0{[(2z1-a)z21a-2J:. z4’l)dz’}.
J

a 2xa2+ax2—a2=
-a = ‘i(xddxz

II’or all real airfoils with cusped trailing edges, therefore, the

area Z& can be expressed aa

A2= –-sa2X22+ axg —a2 w(z2) ~zq

-a ~~ u,
(43)

LIFT-STEADY AND INDIOIAL MOTION

The reciprocal theorems offer considerable advantage in
the calculation of the lift of wings huving a nonuniform
angle-of-attack distribution or of wings in a stream huving
nonuniform flow directions. For these applications, it is
convenient to consider a special form of the reciprocal theo-
rem tihich relates the lift on a wing having arbitrary distri-
bution of local angle of attack to that of the W.-plute wing
of identical plan form in flight in the reverse direotion.
Since the solution of this latter problem is often known or

‘ can be found relatively easily, the solution of the original
problem is facilitated in many titances.

Lift of arbitrarily cambered vvings.-Consider two wings of
identical plan form in flight in opposite directions, as shown
in figure 5. Wing 1 is arbitrarily cambered and twisted and
wirg 2 is flat.

al= al (zl,yl,2?, aa=const. (44)

z, z~ z,

u. t f &
U*

x,

x,

“X2

Application of equations (44) and (24) yields the following:

or

(46)

THEOREM: The lift in steady or indicial motion of a
TV@ ham arbitmwy twist and camber is equal to tho
intagnd over thephm form of the product of the local angle
of attabk and the loading per unit angle of attack ot the
corresponding point of a flat-plata wing of identical plan
form in flight in the reveme directiori.
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Equation (46) may be used to derive Munk’s integral for-
mula for the lift of an arbitrarily curved airfoil in subsonic
flow. Consider airfoils 1 and 2 placed in their respective
coordinate systems, aa indicated in figure 6. The angle-of-
attack distributions on the two airfoils are given by ‘dz,

al= ——J
dxl

a~= Ccmst. (46)

.?, ZI + ’72

L— - ++x,+ X2
-a a -a a

.?, =-X2

FIGUUE &-Sketchofnrbhnrihcnrnbem.1akfoflIlhstmtInEsmnkmlsU@ h ematiena(40)
tbmugb (E@. - -

The loading per unit angle of attack on airfoil 2 is

%=?e=?e ~

whore gOis free-stream dynamic pressure (1POU7).
tution into equation (47) yields the lift formula

(47)

Substi-

(48)

The corresponding formula for the lift of a tier of curved
airfofi may also be derived similarly horn the expression
for the loading on an equivalent tier of flat airfoils. Con-
sider, for example, an unstaggered lattice of ‘flabplate
airfoils arranged vertically. If the gap distance between the
dates is h, the loading per unit angle of attack is

-z=FsechcN=!EmAps 4 q.

The formula for the lift on one of a lattice of identically
cambered airfoils 2 is therefore

The load distribution per unit angle of attack for a two-
dimensiorml supersonic wing is

(49)

and, from equation (47), the lift is

The extension of this result to include supersonic-edged wings
straight trailing edges leads to a result given origimdly by
Lagemtrom and Van Dyke (ref. 21). If, as in figure 7, the

1 TM rqlb as well en the detnfkd Pr=me Wtrfbutlon,b M derivedbg Mr. Panl
F. ByrdoftheAmesAmnnntlcalIAhintiry byrnmsof8directfnmdonoftbeti~
lnte@ equntionrelntlwthemynomfc w?%mreandwernetryoftbeofrfefl.Hlnwork
W cdsobeenA inderlvlngeqmtlen9(S0)ond(81).

IN ADRODYNMC43

z,

26
Z2

z,

t i“
Y2

X2

Fxoum 7.-SkIatobOf-sufwmmfcAgcd wing fflnshting sgnhls used in equatkm (51)

and (52).

sweep angle of the straightedge is A, the load distribution
per unit angle of attack of the reversed wing is

(51)

and the lift is

L,=
—4q~

SS~ dx,dyl (52)
~sec ‘A— M02

P,

A less obvious application yields the build-up of lift with
time of an arbitrarily cambered two-dimensional supemonic
airfoil starting impulsively from mat at a constant speed.
Rewriting equation (45), lift is

Figure 8 presents sketches showing the final positions of the

~13~E &—~M h wbhh dlffWOnt fOiTILYOf ~t@fOn (64) opp]Y.

airfoils relative to each other for various values of 2’. In
reference 22 the expressions for the loading in equation (53)
are given. Over the intervals denoted by @, @, and @ in
the sketch, these expr-ions are

(54)

Lift on a wing in -a nonuniform dowmwazh field,-The
reciproctd theorem of equation (45) can also provide a par-
ticularly good method of determininggthelifton awingin
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certain nonuniform downwash fields of known :tructure.
Such problems arise whenever a wing acts in the presence
of other wings, bodies, or propellers but is always of prime
concern in the determina tion of the lift on a tail acting in
the dowmvadi field of a wing. Inmost problems, the down-
wash velo~ities at the position of the tail may be considered

. to be constant in the longitudinal direction and to vary in
the spanwise direction, thus .

.
al =al (yI,T), ciz=const. (55)

and

where L is the span load distribution associated with the
load distribution Apz. Summarizing, the lift in steady of
indicial motion of a wing in a dowmvash field which varies
across the span is equal to the integral over the span of the
product of the local angle of attack and the span loading per
unit angle of attack at the correspondhg spanwise station
of a flat-plate wing of identical plan form in flight in the
reverse direction. This statement generalizes the result
given recently ‘by Alden and Schindel (ref. 23) for steady
flow about wings having supersonic leading and tra@g
edges and streamwiee side edges.

As for example, consider the problem of determining the
lift on a wing at a geometrical angle of attack of zero resulting
from the prwenoe of an infinite line vortex of strength r
extending in the flight direction. The wing will be considered
to have such a plan form that its span loading when in
flight in the reverse direction is elliptic. The notation is as
shown in fibwe 9. For this problem, therefore, the span

FIom 9.—- of wing and n&hborfng vortas.

loading of the wing in reverse flight is given by

(57)

The local angle of attack of the origimd wing due to the
presence of the ~ortex is given by

. -,
r . .yl_/g

< al= z~uo[(yL–p)2+.7’ ($8)

Substitution of equations (57) and (58) into equation (66)
yields the following formula for ‘the lift:

.
The lift on a wing in the vicinity of a n~ber of such

vortices may be found by superposition.

Lift due to deflection of a portion of the wing surfaoe.—
Let a portion P’ of the surface of wing 1 be deflected a con-
stant angle 3 and the remainder of the wing, be a flat plde
dined with the free-strewn direction. Let wing 2 be a
flat-plate wing inclined at an angle of attack a, thus

\

6 on P’
al= a~= COIISt. (00)

O elsewhere

Substitution of equation (60) into (45) yields the following
result:

L,—.
8 fs()Zdfi’,(61)

1’

The lift in steady or indicial motion per unit angular
deflection of a portion of the wing sprface is thus equal to
the lift per unit angle of attack on the corresponding portion
of a flat-plati wing in flight in the reverse direction. This
generalizes a rmdt given previously by Morikaw~ and
Puckett (ref. 24) for steady flow about low-aspechratio wings.

This rule is very useful in the determination of the lift
resulting from the deflection of a flap or control surface.
This is particularly true for supemonic speeds since the load-
ing on the related flat wing is often a constant over a largo
portion of the area of integration.

As a further. example, consider the case of a low-aspecb
ratio wing having a straight trailing edge and mounted on
an iniinite cylindrical body of revolution. The entire wing-
body combination is at zero angle of attack except for tlm
flaps on the rear of thetig that are deflected an angle & Tho
problem is to determine the liit on the entire wing-body
combination due to the deflection of the flaps. Slender-
wing-theory reswlta of reference 25 are to’ be need. The
notation is indicated in figure 10.

- x,
.

FIGURE 10.—VIBW of ffftinK slender wfng-lxdy combbmtlona
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The solution of this problem is particularly facilitated by
the fact that slender-wing theory indicates that the loading
on wing 2 is concentrated on the leading edge, as shown in
the figure. Therefore, the lift of wing 1 is found by inte-
grating the span loading curve of wing 2 over the portion of
the span between y=f and y=s. Thus “

The. span loading on wing 2 is given by

.

‘@)=’@@JHG3
The lift due to the deflection of the flap is therefore

‘f,ap=’~o’’{(l-%y:--)+
X’+$)mcsh1-%;?’s)4+
a’ [1 +(a/s)’J(j/s)’- 2(a/8)4
—arc Sin
d @)’[1-(a/8)q’ }

(62)

(63)

(64)

A plot of the results is shown in figure 11. The lift per unit
angle of flap deflection (L/6)~l=p has been nondimensional-

1.0

,

.8 /
/’

m

I I I

1. I

o .2 .4 .6 .8 1.0
0/s

FmmE11.-LlftatBslmder*g-body mmblmtlonnmkhg fmmtip defltin.

tied by dividing by the lift per unit angle of attack (L/a)w_B
of u slender wiq-body combination, of identical plan form.
I?rom reference 25, (L/a)W-= is given by

()(L/a) ~_B=!&r@t’ 1–$ 2 (65)

ROLLING MOMENT-STEADY AND INDICfAL MOTfON

The calculation of the rolling-moment characteristics of
wings having a nonuniform angle-of-attack distribution or

of wings in a strewn with nonuniform-flow directions can be
performed in many cwws through use of the reciprocal
theorem in a manner analogous to that described for the
lift characteristics in the preceding section. In every case,
the rolling moment of the given wing will be related to the
lift on a rolling flat-plate wing. For the sake of simplicity,
all the present examples will lm coniined to the case where
the rolling moments are evaluated about the z axis, con-
sidered to lie in the plane of symmetry.

Rolling moment of arbitrarily cambered wings.-Consider
two wings of identical plan form in fight in opposite direc-
tions, as shown in figure 12. If the local angle-of-attack

Z2

%

FmuEE1$—cardfnw mtom ~d mbo~ - fnd.mdon of Aotfon Mwmn rolling

momont of arbitrrn@ cambered wfngd ond the Imdfn.g on rollfng fit-plato wfngs

distribution of wing I is arbitrary and that of wing 2 variw
linearly with y (which might be likened to either a wing with
linear twist distribution or to a flat-plate wing rolling about
the z axis with constant angular velotiw pa’),

~2_P2’Y2LYI=al(zl,yl,z’), u, (66)

and the following relations can be written:

(67)

THEOREM: The rolling moment in steady or indicisl
motion of a wing having arbitmry twist and camber is

equal to the integral over the plan form of the product of

the locsl angle of attack and the loading per unit (p,’/u,)

at the corresponding point of a rolling flat-plate wing of

identical plan form in flight in the reverse direction.

Applications of this theorem follow in a manner very
similar to that deAcribed previously for the corresponding
theorem regarding lift.

Rolling moment on a wing in a nonuniform downwash
field.-Consider a .xving placed in a flow field in which the
dowmvash velocities at the position of the wing are constmt
in the longitudinal direction and vsry in the spanwise direc-
tion. The related wing is again a flat-plate wing rolling with
an angular velocity p~j ss described in the preceding section,
thus CYl=al(yl.2–P#h (68)

o
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The rolling moment of the first wing is then given by

or, in words, the rolling moment in steady or indicisl motion
of a wing in a dowmvash field xvhich varies across the span is
equal to the integral over the span of the product of the local
angle of attack and the span loading per unit (pj’/UO)at the
corresponding spamvise station of rbrolling flabplate wing of

identical plan form in flight in the reverse direction.
Rolling moment due to deflection of a portion of. the wing

surfaoe .—Let a portion P’ of the surface of a wing be de-
flected a constant angle 6 and the remainder of the wing be a
tht-plate alined with the free-stream direction. The related
wing is a flat-plate wing rolling with angular velocity ps~

(70)
{

8 on P’
al=

a2_P2’Y2

O elsewhere u,

Substitution from equation (70) into (67) yields the following
result:

%=g(iif%w’ (71)

Thus, the rolling moment in steady or indicial motion due
to a given angular deflection of a portion of the wing surface is
equal to the lift per unit (pi’/Uo) on me corresponding portion
of a rolling fla&plate wing of identicd plan form in flight in
the reverse direction. .

As an example, consider a“ wing-body combination con-
sisting of a low-aspeckratio wing having a straight tmiling
edge mounted on an iniinite circular cylinder, as shown in
figure 13. Thelbody is at zero angle of attack, the right wing

Z2

Fm3UnE N.-sketch Iflushatf.ng symhk nsed h dfsmmbn of rcdlfng momant resultlng

from dlffwentid defk.flon of wfngd of slender wfng-lwly eombheition.

P’ is deflected an angle 6, and the left wing P“ is deflected –6.
The problem is to determine by means of slender-wing theory
the rolling moment exerted on the entire wing-body com-
bination. The notation is indicated in figure 13.

{

—3 on left wing, P“
al= Oon body #b’Y2

Uo (72)
+8 on right wing, P’

Since slender-wing theory indicatw that the loading on wing
2 is concentrated on the leading edge, the rollifqg moment of

wing 1 can be found by integrating the span loading on wing
2.

G=SJaI(&)d~~=-SL:(&JdY2+
Pz’ ,

8J
8.4, —’y’’2’sxP%)’~;a P2’I Do

where, from reference 26,

L
p2’/uo

The resulting expression for the rolling moment is

g (1–m]+%k) [; (;–21P+:)(1+

2

)
~ R(l –li?)]+g f?’n*+

–arc*s&% +3ru .

(74)

● ff=arc q..

A plot of the results is shown in figure 14. The rolling
moment has been nondimensionalized by dividing by tho
value corresponding to that of the wing alonO (l?= O).

PITCIUNG MOMENT–STEAD,Y ANDINDICIALMOTION

A number of useful relations regarding the pitching-
moment characteristics of wings may be found through
application of the reciprocal theorem. Since tho general
procedure is closely analogous to that of the preceding sec-
tions, the following discussion will be brief.

Htohing moment of arbitrmily cambered wing.-Considcr
the problem of determining the pitching moment Ml about
the origin of wing 1 possessing an arbitrary distribution of
camber. The related wing in flight in the revenm direction,
wing 2, is a flat-plate wing of identical plan form pitohiug
about the moment axis of wing 1, as .tidicated in figuro 16,
thus

al=al(Zl,l/l, T)y
__ !72$1 !72($2– t).Z—

-m= UO (76)

.
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~GUliE 14.-RoIllngmomentof slender wfng-body comblnatbm Atig frem dlikentlef

de fledlon of wings.

Z2

t

F19U13E 15.–co0Idh0to ‘ystom’ and .$ynkds -h dkmdon of relation iwtwefm pltohing

moment on arbitrarily mmbemd winge and the Icadhg on pltcbfng tlat-phto WIWK

The pitching moment of wing 1 is given by

M,=– “A’’’=JY+%)%S’S’SS
P, P,

‘SS”’(*)’S’‘“)
P,

THEOREM: The pitching moment in steady or indicial
motion of rLwing having arbitrary twist and camber is
equal to the integral over the plan form of the product
of the locrtl angle of attack and the loading per unit
(qz/UO) at the corresponding point of a flat-plate wing
of identical plan form in flight in the reverse direction
and pitching about the moment axis of the first wing.

The necessity for pitching wing 2 about the moment ask

of wing 1 may be removed by considering wing 2 to be

re-expressed in terms of two component wings having angle-

of-attack distributions given by

~2,=b@2’-%’) ~2,,=@@o@=comt
u, ‘ , u, . (77)

Wing 2’ is thus pitch@ with angular velocity g,, about art

axis at x~~=%. and wing 2“ is a fiat-plate wing at a con-

stant angle of attack. The pitching moment on wing 1 is

then given by

‘l=JJ”’(*)’S’’+JJ”l(*)’S’”
2’ P,,,

=;S ( )
Ap2.

al — ds2J+(q&- f)
qvluo JJ”’r%)is’” ’78)

P,* P,*8

Applications of pitching-moment theorem,-The applica-
tion of equation (76) or (78) to problems analogous to those
discussed in the preceding section can be carried out in a
straightforfvard manner. Consider, first, unstaggered lab
tices on airfoils such that the airfoils in lattice 1 have arbi-
trary camber distributions and those in lattice 2 are flat
platea pitching about their midchord positions. The angles
of attack in the two lattice systems are

dz,
al(%zl)=-~

“@’zJ=%?
(79)

and the load distribution on each airfoil in lattice 2 is, in
subsonic steady flow,

“p’(’’=Q’(+)wccOs[ sechG)cA(%)l ’80)

-where 2a is chord length. Equation (76) yields, for pitch-

ing moment of the tit airfoil about its midchord point,

the result

A second example, illustrating unsteady cdfects, is the fol-
lowing: Let wing 1 be a flat-plate wing, then a, is constant,
and equation (78) simplifies to

M, L3,.
—=*+(%’– .9~

al

where L.2’ is the lift on wing 2’ pitding about z2’=b’, and

U’ is the lift on an inclined flahplate wing. Equation (82)

may be exprassed in terms of conventional stability deriva-

tives as follows:

(83)

An application of this result to unsteady-flow problems is

indicated in figure 16 obtained from indicial-lift and pitching-

moment results of reference 27. This figure shows the

growth of lift and pitching moment on triangular wings with



—. —.— —

.

266 RIIPOIW lll*NATIONAL ADVISORY COMMIXCEE FOR AERONAUTICS ,

2.5

2.0

1.5

1.0

.:

0

-.5

-1.0

hfo.2

I (G?J,=(Q+LJ2° I

1

,- (%)1
/“

.5 Lo 1.5 Eo d

Gad lengths trawled

FIOURE l&—IndtcldlMtandpltdlng mm.nmton h-bgdai wingswithsmemonfowlges

supersonic edges at a Mach number of 2 followi& indicial
angle-of-attack and pitching-velocity chang~. In these
resuhk, the rotation and moment axw are always at the
leading edge or apex, therefore, %’=0 and g=h. It may
be seen that the three curves are related in the siple linear
manner indicated by equation (83).

If al is independent of x apd varies only in the spanwim
direction, that is, if al= al(y~, the pitching moment on
wing 1 is given by the following equation, analogous to
equation (56) for lifti

If a portion P’ of the surface of wing 1 is defleci&l a con-
stant angle 3 and the remainder of the wing is a flat plate
dined with the free-stream direction, the following relations
hold:

{

SonP’.

al=
O,elsewhere

and
,

RECIPROCAL RELATIONS INVOLVING MOTION INTO A GUST

All previous applications that have been considered wore

derived from equation (24). In the present section, the

more general equation (22) will be used to develop two the-

orems which relate the build-up of lift on a wing entering

a gust and the build-up of circulation on the same wing

moving indicially but in the opposite direction. The rela-

tions to be obtained hold for the Mach number range for

which the -wave equation applies. Under the special assump-

tions of incompressible flow, the results in hvo dimensions

establish a direct connection behveen the circulation function

calculated by Wagner (ref. 28) and the gust Mt curve cal-
culated by Kiissner (ref. 29) and von K6rm6n and Sears
(ref. 30). A proof of the connection between these functions
for two-dimensional incompressible flow has been given by
Sears (ref. 31).

TWO.DI~SIONAL FLOW

A flat plate ,is assumed to be moving in two modcw of
motion: @ the motion associated with the ~,%,h, axea, tlm
wing starts at time zero (h=O) and moves at a constant
velocity U. and at a constantangle of attack; the motion
associated with the zl,zl,tl, axes starts at time zero (tl=O)
with the wing moving’in the oppositi direction at a velocity
UO and entering a sharp-edged gust. The gust exists for
all ZI less than zero and has a vertical veloci,~ WI= — a~ Z70.
The two wings, therefore, have anglm of attack as follows:

a2(q”, tJ =a2=C011St. for–MO&<%<2a–M&, tg>o

f

–Motl<xl<o OS tlS 2a/M0
al(31,tJ =ag=C01M3t. fO

—M&<xl<2a-M& 2a/MOStl

The two-dimensional form of equation (22) yields

w-here the region A is bounded by the lines xl= O, xl=2a—
Mall,~= T, and Zl= –Mall. The integral on the right can be
rewritten as a line integral by means of the identity

J SS– P @s (t, n)d-s= : dS

and equation (86) becomes

Ja2~T.Lg(t,)dtl=~az‘J A% cos (h, n)ds

o

where the line integral extends around the boundary of tlm
region A. Since A@ vanishes on the lines %= —Mdz and
i!2=0, the equation becomes

J
T

a~ JL(fi)dtl=P@o% ~:_MoT
o ‘4”’+% 9’”’ ,

Differentiation with respect to Tyields

a2LE(T) =@oag&42a-+ioT, T)
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The discontinuity in p~ is evaluated at the trailing edge at
time T and is therefore equal to the circulation I’Z of the air-
foil at t.iie T. The equality thus becomes

L.(T)_ ~OUOr2(g
ag q

(87)

THEOREM: The circulation per unit angle of attack
of a flat plate moving indicially with a velocity UO is
proportional to the lift per unit a. of the plate entering
a sharp-edged gust having a uniform vertical velocity
equal to WS= —al Uo.

In figure 17, tl& time variation of th&e variables, as well
m the lift of the indicial wing, is indicated for low speed and
for flight Mach numbers equal to 0.8 and 1.46 ss determined
from references 22 and 27.

$!EIIH
o 5 10 150 5 10 15

Half-chwdz tmveied Holf-chwds tryded
MO=O MO=0.8

ilac1
a

,/cfg

5 [0 15
Htif-ctmds traveled

IWO=1.46

FIGURE 17.-Orowth of eIa and cu with ohord lengths travekl.

~

THEEE-DIMENSIONAL FLOW

The extension of the above results to three dimensions
follows directly. The origin of the z,, VI, z,, t,=es is aasumed
to be. initially at the fo~emost point of the wing in reverse
motion. The two wings have, respectively, angles of attack
a2= const. over the reverse moving plan form for all values
of, time and a.= const. over the region occupied simultane-
ously by the
(22) gives

Tho integral

forward moving wing and the gust. -Equation

atr’”fsA%(% ‘?/1, &)~zl~?/l=

P(tJ

on the right can be rewritten as a two-diman-
sionrd sfiace integral by means of the identity

-ss SSSP CCS (t,n)dS= ~ dzdydt

and equation (88) becomes .

where the integral on the right extends over the boundary of
the volume in %, y2, h space occupied by the wing and the
gust. The value of Aq, must, of course, vanish on the lead-
ing edge of the wing and at h=O. In order to fix the limits
of integration, suppose the wing is symmetrical about its
longitudinal W& rmd let the leading edge of the forward

wing be given by the equation

For the reverse wing and its coordinate system, this edge,
which is how the tra@g edge, is

q=c.ckf&I-.f(*y2) or y2=*8(Q–%–ikf&J

where c, is the root chord. The reverse-flow integrals of

equation (88) then become

J
T

al L’(t,)dtl= pl)aflag
o s:-%.dx’ef~::

[
An x2,YZ, 1

C,—zr—-f(+ Y’i) ~y2

Mo

where @A) is the local half-span of the wing. lXfferentia-
tiofi with respect to T yields

J
8(MIJTI

[ f(%)dy2a~L~(l’)= poUOaK Am C,—ikfoT, yx,T——
–a(a.fo!rl 1

(89)

The discontinuity in P is thus to be integrated spanwise at
the rearmost point of the indicisl wing; this follows from the
relation

[ 1f(fl)=@@,y,t);A* x,y,T—— T–~)<t<T

.
which fixes the vortici@- in the wake of the wing once it is
shed from the trailing edge.

It remains to mention the nature of the limits +s(k?o~.
As shown in figure 18, the.span width of the vortex wake at
the trailing edge is, during the early stages of the motion,
dependent on the local span width of the wing. The width
2@40T) of wake is, in fact, equal to the mtium width of
the portion of the first wing that lies within the gust. After

z, .?2

+ t

ZI, Z.z

J

FIQIJEE m.-sk~tuh IlhAatlng nntum oi integration limits in eqnatiun @9).
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suliicienttimehaspassed for the vortex wake of the indicial

wing to. develop its full span width at the trailing edge,

s(lZO~ becomes so or semispan of the wing. From equation

(89) one may conclude the following:

THEOREM: The lift per unit am of a flat-plate wing an-

tmhig a sharp+dged gust having a uniform vertical

velocity eqmd to WE= — *VO is proportiomd, at each

instant of time, to the spantie integral at the trailing

edge of the vorticity shed-by the same wing moving

indicially in the reverse direction with a vdocity Uo.

As a direct example, tl$s theorem has been used to confirm,
from a lmowledge of the indicial solution, the sharp-edged-
gust lift of the rectangular-plan-form supersonic wing given
by Miles in reference 32.
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